Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity

نویسندگان

  • Dana SCHLOMIUK
  • Nicolae VULPE
چکیده

In this article we prove that all real quadratic differential systems dx dt = p(x, y), dy dt = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity at least five and a finite set of singularities at infinity, are Darboux integrable having integrating factors whose inverses are polynomials over R. We also classify these systems under two equivalence relations: 1) topological equivalence and 2) equivalence of their associated cubic projective differential equations when cubic projective differential equations are acted upon by the group PGL(2,R). For each one of the 28 topological classes obtained we give necessary and sufficient conditions for such a system with invariant lines to belong to this class, in terms of its coefficients in R12. Résumé Dans cet article nous prouvons que tous les systèmes différentiels réels dx dt = p(x, y), dy dt = q(x, y), gcd(p, q) = 1, ayant des droites invariantes de multiplicité totale au moins cinq, sont Darboux intégrable possédant des facteurs intégrant dont les inverses sont des polynomes sur R. Nous classifions ces systèmes par rapport à deux relations d’équivalence : 1) l’équivalence topologique et 2) l’équivalence de leurs équations différentielles cubiques projectives sous l’action du groupe PGL(2,R). Pour chaqune des 28 classes topologiques obtenues nous donnons des conditions nécessaires et suffisantes pour qu’un tel système ayant des droites invariantes appartienne à cette classe, en terms de ses coefficients dans R12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Systems with Invariant Straight Lines of Total Multiplicity Two Having Darboux Invariants

In this paper we present the global phase portraits in the Poincaré disc of the planar quadratic polynomial systems which admit invariant straight lines with total multiplicity two and Darboux invariants.

متن کامل

Planar quadratic vector fields with invariant lines of total multiplicity at least five

In this article we consider the action of affine group and time rescaling on planar quadratic differential systems. We construct a system of representatives of the orbits of systems with at least five invariant lines, including the line at infinity and including multiplicities. For each orbit we exhibit its configuration. We characterize in terms of algebraic invariants and comitants and also g...

متن کامل

Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four

In this article we consider the class QSL4 of all real quadratic differential systems dx dt = p(x, y), dy dt = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and a finite set of singularities at infinity. We first prove that all the systems in this class are integrable having integrating factors which are Darboux functions and we determine their first integrals. W...

متن کامل

Planar quadratic differential systems with invariant straight lines of the total multiplicity 4 Dana

In this article we consider the action of affine group and time rescaling on planar quadratic differential systems. We construct a system of representatives of the orbits of systems with four invariant lines, including the line at infinity and including multiplicities. For each orbit we exhibit its configuration. We characterize in terms of algebraic invariants and comitants and also geometrica...

متن کامل

Global Phase Portraits of Quadratic Systems with an Ellipse and a Straight Line as Invariant Algebraic Curves

In this paper we study a new class of integrable quadratic systems and classify all its phase portraits. More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having an ellipse and a straight line as invariant algebraic curves. We show that this class is integrable and we provide all the different topological phase portraits that this class exhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005